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We present a theoretical study of electron wave functions in ballistic circular n-p junctions of bilayer
graphene. Similarly to the case of a circular n-p junction of monolayer graphene, we find that �i� the wave
functions form caustics inside the circular region and �ii� the shape of these caustics are well described by a
geometrical optics model using the concept of a negative refractive index. In contrast to the monolayer case,
we show that the strong focusing effect is absent in the bilayer. We explain these findings in terms of the
angular dependence of Klein tunneling at a planar n-p junction.
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I. INTRODUCTION

The interface of an n-p junction �NPJ� of graphene1–3 is
fully transparent for electrons approaching it with a perpen-
dicular incidence.4–9 Electrons approaching the interface at a
finite angle are still transmitted with a high probability pro-
vided that the transition between the n and the p regions is
sharp enough.5 As proposed recently by Cheianov et al.,4 this
high transparency of the interface offers a way to use the
graphene NPJ as an electronic lens. The refraction of elec-
tron rays in this system follows Snell’s law with a negative
refractive index, which is a consequence of the fact that the
wave vector and the velocity of the valence-band quasiparti-
cles in the p region are antiparallel. In the case of a pointlike
source of electrons on the n side of the interface, the NPJ
provides perfect focusing of the emitted electrons on the p
side if kn=kp, where kn �kp� is the wave number in the n �p�
region. If kn�kp, the sharp focus transforms into a smeared
focus and a pair of caustics. �For a review on the theory and
classification of caustics see Ref. 10.�

According to our earlier theoretical analysis,11 focusing
and caustic formation also arises in circular n-p junctions of
graphene, where the n �p� region is defined as the area out-
side �inside� a circle. Such a device is found to be able to
focus an incident parallel beam of electrons into a certain
spot inside the p region, however, the focusing is imperfect
and caustic formation arises even if kn=kp.

The interband or Klein tunneling6,7 of carriers in bilayer
graphene12,13 is remarkably different from the same process
in monolayer graphene. Namely, the bilayer NPJ reflects nor-
mally incident electrons with unit probability.6 This differ-
ence leads to the anticipation that the patterns of electron
flow in planar or circular bilayer graphene n-p junctions are
distinct from the patterns in their monolayer counterparts.

In this work, we investigate the possibility of controlling
the electron flow in bilayer graphene by using a gate-defined
circular NPJ. We provide an exact solution of the effective
Schrödinger equation in the presence of a steplike circular
potential barrier. Using the exact wave functions we demon-
strate that in contrast to the monolayer case, the focusing of
a parallel electron beam is not possible in the circular bilayer
NPJ. However, we find that caustic formation remains a size-
able and possibly observable effect even in the bilayer. We

also calculate the angular dependence of transmission prob-
ability in a planar NPJ and use the results of this calculation
to interpret the absence of focusing and the presence of caus-
tic formation in circular junctions.

The paper is organized as follows. In Sec. II we solve the
effective Schrödinger equation modeling the circular NPJ in
bilayer graphene using the method of partial waves. In Sec.
III we calculate the angular dependence of transmission
probability in a planar NPJ and discuss the results of Sec. II
in terms of the transmission probability function. In Sec. IV
we discuss the validity of the model we use, give a brief
overview of related experiments, and provide a short conclu-
sion.

II. ELECTRON FLOW IN A CIRCULAR n-p JUNCTION

In this section we consider the scattering of an electron
plane wave on a circular n-p junction in bilayer graphene
�see Fig. 1�. Our goal is to calculate the exact scattering
wave function as a function of system parameters and to
identify the characteristics of the flow of electrons inside the
circular p region. We will focus on the case when the radius
of the circle is much larger than the electron wavelength
since in that regime we expect a correspondence between
results of the quantum-mechanical model and a simplified
description based on principles of geometrical optics.

To model the two-dimensional electron flow in bilayer
graphene, we use a two-component envelope function
Hamiltonian which has been derived by McCann and
Falko.14 The derivation of this Hamiltonian starts from a
simple tight-binding model of bilayer graphene, which con-
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FIG. 1. �Color online� An incident plane wave of electrons in
bilayer graphene is scattered by a circular n-p junction created by a
gate-induced circular potential barrier V�r�. In the n �p� region the
Fermi energy lies in the conduction �valence� band.
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tains only nearest-neighbor intralayer and interlayer hopping
matrix elements. These hopping matrix elements are usually
denoted3,13 by �0 and �1, respectively. This tight-binding
model predicts that the valence and conduction bands of bi-
layer graphene are touching at the K and K� points, i.e., at
the two nonequivalent corners of the hexagonal Brillouin
zone. The Fermi energy of undoped bilayer graphene lies
exactly at the energy corresponding to these touching points.
In the vicinity of the K point, the dispersion relations de-
scribing the conduction and valence bands are both qua-

dratic, E��k�� ��2�k−K�2 /2m, where m=
2�2�1

3a2�0
2 �0.054m0

is the effective mass. Here the +�−� sign refers to the con-
duction �valence� band, a is the lattice constant, and m0 is the
free-electron mass. In this low-energy regime the quasiparti-
cle wave functions can be characterized by the eigenfunc-
tions of the 2�2 effective Hamiltonian

H0 = −
1

2m
� 0 p−

2

p+
2 0

� , �1�

where p�= �px� ipy�. Note that this Hamiltonian describes
the valence-band and conduction-band states simultaneously.
Similar statements are true for the vicinity of the K� point.
We note that the dispersion relation and the effective Hamil-
tonian become more complex if one includes second-nearest-
neighbor interlayer hopping matrix elements in the tight-
binding model. In particular, such terms lead to a trigonal
warping13–15 of the quasiparticle dispersion. We comment on
the significance of trigonal warping in Sec. IV.

We model the gate-defined circular potential barrier by a
steplike potential V�r�=V0��R−r�, where � denotes the
Heaviside function. Hence the complete Hamiltonian of the
system under study is

H = H0 + V�r�1 , �2�

where 1 is the 2�2 unit matrix. The validity of this model
will be discussed in Sec. IV. Note that the same model was
used recently to calculate the lifetime of quasibound states in
a similar system.16

We concentrate on the regime where the potential barrier
forms an n-p junction, i.e., the Fermi energy EF of the elec-
trons lies between the Dirac point of the bulk and the top of
the potential barrier �0�EF�V0�. In this case, the region
outside the circle of radius R contains electrons in the con-
duction band �n type�, whereas the region inside the circle
contains holes in the valence band �p type�.

Our aim is to consider the scattering of an incident elec-
tron plane wave coming from the n region along the x axis as
shown in Fig. 1 and having energy EF. Such an electron has
the following two-component wave function:6

��x,y� = eiknx 1
�2
� 1

− 1
� , �3�

where kn=�2mEF /�. In order to derive the wave function
describing the scattering of this plane wave, we first treat the
scattering of cylindrical waves and then utilize the fact that
the plane wave ��x ,y� is a certain linear combination of
cylindrical waves. Here we note that scattering theory has

been used recently to predict transport properties of
disordered17–20 and ballistic21 bilayer graphene structures.

The system has a circular symmetry around the origin,
hence the Hamiltonian commutes with a pseudoangular mo-
mentum operator Jz=−i��	+�
z, where �	 is the derivative
with respect to the angular polar coordinate and 
z is the
third Pauli matrix. The presence of this symmetry simplifies
the forthcoming calculations.

Using the properties of Bessel functions22 it can be shown
that in the n region, for any integer j the wave functions

h j
�1��r,	� = �Hj−1

�1� �knr�e−i	

Hj+1
�1� �knr�ei	 �eij	, �4a�

h j
�2��r,	� = �Hj−1

�2� �knr�e−i	

Hj+1
�2� �knr�ei	 �eij	, �4b�

k j�r,	� = �Kj−1�knr�e−i	

Kj+1�knr�ei	 �eij	 �4c�

are simultaneous eigenfunctions of H and Jz with eigenval-
ues EF and �j, respectively. We denote the radial polar coor-
dinate with r. Here Hm

�1�, Hm
�2�, and Km denote Hankel func-

tions of first and second kind and the modified Bessel
function which is bounded for large arguments,22 respec-
tively. There exists a solution similar to those in Eq. �3�,
containing the modified Bessel function Im. We disregard it
because Im diverges for large arguments. Analysis of the
quantum-mechanical current density in state h j

�1� �h j
�2�� shows

that it is an outgoing �incoming� cylindrical wave. On the
other hand, k j is an evanescent cylindrical wave which does
not carry current in the radial direction.

Inside the circular p region, the regular eigenfunctions of
the Hamiltonian H having energy EF are

j j�r,	� = � Jj−1�kpr�e−i	

− Jj+1�kpr�ei	�eij	, �5a�

i j�r,	� = � Ij−1�kpr�e−i	

− Ij+1�kpr�ei	�eij	. �5b�

Here kp=�2m�V0−EF� /� and j is an arbitrary integer. Simi-
larly to the wave functions in the n region, j j and i j are
eigenfunctions of Jz with an eigenvalue �j. We disregard
other eigenfunctions of H, which are divergent at the origin.

Now we consider the scattering of a single incoming cy-
lindrical wave, h j

�2�. Since �H ,Jz�=0, the pseudoangular mo-
mentum does not change during the scattering process, there-
fore the complete wave function describing the scattering
can be written as

� j
�n� = h j

�2� + Sjh j
�1� + Ajk j , �6a�

� j
�p� = Bjj j + Cji j �6b�

in the n and p regions, respectively. The coefficients Sj, Aj,
Bj, and Cj have to be determined from the boundary condi-
tions at the interface of the NPJ: the wave functions and their
derivatives have to be continuous at r=R. Due to the two-
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component nature of the wave functions, the two boundary
conditions result in an inhomogeneous linear system with
four equations and the four coefficients as unknown. This
system can be solved analytically.

Having the coefficients Sj, Aj, Bj, and Cj in hand, one can
determine the wave function describing the scattering of the
plane wave � in Eq. �3�. Making use of the fact that22

eikx = 	
m�Z

imJm�kr�eim	, �7�

it can be shown that the plane wave � can be written as a
linear combination of incoming and outgoing cylindrical
waves,

� =
1

i�8
	
j�Z

ij�h j
�1� + h j

�2�� . �8�

This expansion allows us to use the coefficients determined
from the analysis of partial waves to derive the wave func-
tion describing the scattering of the plane wave. In the n
region,

��n� = � +
1

i�8
	
j�Z

ij��Sj − 1�h j
�1� + Ajk j� �9�

and in the p region,

��p� =
1

i�8
	
j�Z

ij�Bjj j + Cji j� . �10�

The complete wave function � is constructed by tailoring
��n� and ��p�. It is built up from cylindrical waves having
energy EF, therefore � is also an energy eigenstate with en-
ergy EF. Since the cylindrical waves fulfill the boundary con-
ditions at R, � also fulfills them. Finally, since in the n region
� contains only the plane wave and outgoing and evanescent
cylindrical waves �no incoming wave�, we conclude that � is
the wave function which describes the scattering of the inci-
dent plane wave.

Numerical results for the spatial dependence of the mag-
nitude of the complete scattering state �
��r�
2� are shown in
Figs. 2 and 3 for two different set of parameters. In both
cases, well-defined patterns of the electron flow can be iden-
tified and the wave-function magnitude is sharply peaked
close to the solid curve. This effect is almost identical to the
one predicted for circular NPJs of monolayer graphene.11 As
we will argue in Sec. III, the geometrical optics model de-
veloped in Refs. 4 and 11 for single layer graphene is also
applicable for bilayer with certain restrictions. According to
the referred theories, the refraction of the incident electrons
is governed by Snell’s law with a negative refractive index.
After the refraction, the electrons enter the p region of the
junction and the envelope of the electron rays forms a caus-
tic. These caustics can be identified in the quantum-
mechanical charge density, as it is revealed by Figs. 2 and 3.

Despite the apparent similarities of the monolayer and
bilayer cases, the analogy is not complete. In a circular
monolayer NPJ the charge density is maximal close to the
meeting point of the two caustic lines, which means that the
interface between the n and p regions provides strong focus-

ing of the incident electrons.11 This feature is missing in our
results for the bilayer. In Sec. III we will show that the ab-
sence of focusing is connected to a general characteristic of
interband �Klein� tunneling in bilayer graphene.

III. TRANSMISSION IN A PLANAR n-p JUNCTION

In this section we study the refraction of electron plane
waves at a planar n-p junction of bilayer graphene. We de-
rive the counterpart of Snell’s law for this system and calcu-
late how the probability of transmission depends on the
propagation direction of the incident electron. The obtained
results will be used to explain our findings for the circular
NPJ �Sec. II�.

The studied system consists of a sheet of bilayer graphene
in the x-y plane which is n type for x�0 and p type for x
�0. The electrostatic potential which creates these regions is
modeled by a steplike function V�x ,y�=V0��x�. We consider
a conduction-electron plane wave incident from the n side of

FIG. 2. �Color online� The spatial dependence of the intensity of
the wave function 
��r�
2 is plotted in the scattering area. Here
knR=300 and kpR=300 corresponding to n=−1. The solid �dashed�
line corresponds to the caustic for p=1 �p=2�, where p denotes the
number of chords inside the NPJ �Ref. 11�.

FIG. 3. �Color online� The same as in Fig. 2 with knR=200 and
kpR=300 corresponding to n=−1.5.
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the junction. We assume that the propagation direction of the
plane wave is given by the angle � �−� /2,� /2� and it has
energy EF �0�EF�V0�.

To derive the Snell’s law for planar n-p junction of bilayer
graphene we follow Ref. 4. The length of the wave vector in
the n �p� region is kn �kp� and the length of the corresponding
group velocity is vn �vp�. �We assume that the plane wave is
refracted and do not consider the case of total reflection
here.� The incident electron has the velocity vn�cos  , sin �
and wave vector kn�cos  , sin �. At the interface this elec-
tron is partially reflected with velocity vn�−cos  , sin � and
wave vector kn�−cos  , sin �. We denote the direction of
propagation of the refracted wave by �, hence the velocity of
the refracted wave is vp�cos � , sin ��. Since the refracted
wave is in the valence band, its velocity is antiparallel with
its wave vector and thus the corresponding wave vector is
kp�−cos � ,−sin ��. The translational invariance of the sys-
tem along the y direction implies that the y component of the
wave vector must not change during the refraction, i.e.,
kn sin =−kp sin �, which results in Snell’s law with a nega-
tive refractive index n=−kp /kn,

sin 

sin �
= n � 0. �11�

This form of Snell’s law is identical to the one found for
monolayer graphene NPJs. Consequently, the mathematical
formula describing the caustic lines formed by the electron
rays in a circular bilayer NPJ is also identical to the one
derived for the monolayer case. This formula is given for the
monolayer in Eq. �9� of Ref. 11 and it has been used to plot
the solid curves in Figs. 2 and 3. The correspondence be-
tween the description of the electron flow in terms of quan-
tum mechanics and geometrical optics is apparent from the
figures: the high-density regions of the quantum-mechanical
wave functions are condensed in the vicinity of the caustic
line.

We further investigate the refraction of electrons at the
n-p interface by calculating the probability of transmission
as the function of the angle of incidence . The system is
modeled by the Hamiltonian H=H0+V0��x�. The wave
functions at the n and p regions can be constructed using the
results of Ref. 6. In the n region, the incident, reflected, and
evanescent modes are given by

�inc�x,y� = eiknyyeiknxx� 1

− e2i� , �12a�

�refl�x,y� = eiknyye−iknxx� 1

− e−2i� , �12b�

�ev,n�x,y� = eiknyye�nx� 1

h�� � , �12c�

where kny =kn sin , knx=kn cos , �n=kn
�1+sin2 , and

h��= ��1+sin2 −sin �2. In the p region, the refracted and
the evanescent waves are

�refr�x,y� = eiknyye−ikpxx� 1

e2i�� , �13a�

�ev,p�x,y� = eiknyye−�px� 1

− 1/h�� + �� � . �13b�

Here kpx=kp cos � and �p=kp
�1+sin2 �. Note that the re-

fraction angle � has to be determined from Snell’s law �Eq.
�11��.

The wave function describing the reflection-refraction
process in the n region is �n=�inc+r�refl+a�ev,n, whereas in
the p region it is �p= t�refr+b�ev,p. One has to determine the
coefficients r, a, t, and b from the boundary conditions which
match the wave functions and their derivatives at the inter-
face x=0. The transmission probability as a function of the
angle of incidence is

T�� = 
t��
2
��refr
vx
�refr�
��inc
vx
�inc�

, �14�

where

vx =
i

�
�H,x� = −

1

m
� 0 p−

p+ 0
� �15�

is the x component of the current operator. Similarly, we
found that R��= 
r��
2=1−T��.

In Fig. 4 we plot T�� for three different values of the
refractive index. A characteristic feature of all the three cases
is the absence of transmission for perpendicular incidence,
T�0�=0. This behavior has been predicted and explained
with the chiral nature of the quasiparticles of bilayer
graphene.6 With the help of Fig. 5 we argue that the absence
of transmission at perpendicular incidence is responsible for
the complete suppression of focusing in the circular junction
we studied in Sec. II. Figure 5 shows several electron rays
approaching the circular p region and being refracted at the
n-p interface. An incoming electron ray can be characterized
by its impact factor b, which is the distance between the
incoming ray and the optical axis �defined as the line con-
taining the horizontal diameter of the circular p region, see
Fig. 4 of Ref. 11�. Note that the impact factor of rays enter-
ing the p region is between −R and R. The angle of inci-
dence, i.e., the angle between the incoming electron ray and
the local normal vector of the interface at the point of inci-
dence, can be calculated from simple trigonometry: �b�
=arcsin b

R . From this result one can express �i� the propaga-
tion direction of the refracted ray using Snell’s law in Eq.

n=-2/3
n=-1

n=-3/2

�Π �2 �Π �4 0 Π �4 Π �2
Α

.1

.2

.3

T

FIG. 4. �Color online� Angular dependence of transmission
probability through a planar NPJ of bilayer graphene. The corre-
sponding values of the refractive index n are shown in the figure.
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�11� and �ii� the probability of transmission �=refraction� as a
function of the impact parameter T�b� by combining the re-
sults for T�� and �b�. In Fig. 5 the darkness of the re-
fracted electron rays reflects the transmission probability
T�b�. The figure indicates that the electron rays approaching
the junction in the close vicinity of the optical axis do not
have an appreciable probability of transmission at the inter-
face, which leads to the complete suppression of the focusing
effect �cf. Fig. 5 of Ref. 11�.

Another remarkable feature of the transmission functions
plotted in Fig. 4 is that transmission is significant ��0.1� in
a wide range between perpendicular �=0� and nearly par-
allel �

�� /2� incidence. With respect to the circular junc-
tion shown in Fig. 5, it means that electron rays hitting the
NPJ further from the optical axis have a significant probabil-
ity to be refracted and hence, to form caustics along the
dashed line of Fig. 5. This analysis built on the geometrical
optics approach and the transmission probability calculations
for the planar junction provides a qualitative explanation of
the presence of the well-defined wave-function patterns pre-
sented in Figs. 2 and 3.

IV. DISCUSSION AND SUMMARY

During the analysis of circular and planar NPJs, we mod-
eled the electrostatic potential as a steplike function of posi-
tion which does not couple different valleys. This assumption
is justified if a�d��n ,�p, where a is the lattice constant, d
is the characteristic length describing the width of the tran-
sition region between the n and p sides of the junction, and
�n and �p are the de Broglie wavelengths of the considered
quasiparticles in the n and p regions. The first relation a
�d ensures the absence of intervalley scattering at the inter-
face and the second relation d��n ,�p justifies the usage of a
steplike potential in our model. Since the geometrical optics
model is expected to capture the main features of electron
flow patterns only when the wavelength of the electrons is
much shorter than the size of the system, the conditions
knR ,kpR�1 has to be fulfilled to observe a pronounced caus-
tic formation effect.

In the model Hamiltonian in Eq. �2� we neglected the
trigonal warping term13,14 and used an approximate effective
Hamiltonian which results in a quadratic dispersion relation.
In bilayer graphene trigonal warping is strong only at very
low energies, when EF��1��3 /�0�2 /4�1.15 meV. Here �0,
�1, and �3 are hopping matrix elements of the standard tight-
binding model of bilayer grapheme13,14 and we used esti-
mates for them from the review of Castro Neto et al.3 For
larger energies, the dispersion relation is dominantly qua-
dratic up to an energy EF=�1 /2�200 meV, where it
crosses over to a mostly linear dispersion.13,14 Therefore our
model should give a good description of quasiparticles hav-
ing energies between 1.15 and 200 meV.

To give a numerical example of parameters which fulfill
the above criteria, we consider a bilayer graphene circular
NPJ with Fermi energy EF=10 meV, gate potential V0
=20 meV, transition region width d=10 nm, and p region
radius R=1 �m. Then kn=kp�0.12 nm−1, �n=�p�53 nm,
knR=kpR�118, and the refractive index n=−1. For these
experimental parameters the model we used is expected to
give a good description of electron dynamics in the circular
bilayer NPJ and the relation knR=kpR�118�1 is expected
to ensure the strong caustic formation effect in this system.

Finally, we summarize some experimental results which
support the feasibility of electron optics devices in graphene
in general. Control of electron flow in a ballistic two-
dimensional electron system by means of gate-defined poten-
tial barriers as refractive elements has been realized nearly
two decades ago.23 Direct imaging of the electron flow in a
two-dimensional electron system has also been carried out
applying scanning gate techniques.24,25 Scanning tunneling
microscopy has been used to show that oscillations of the
local density of states around a static impurity can be refo-
cused to a remote location.26 To realize similar experiments
making use of the negative refraction index in graphene, a
trivial prerequisite is the ability to fabricate gate-defined tun-
able NPJs, which has already been reported by several
groups.27–33

In conclusion, we have carried out a theoretical analysis
of electron dynamics in circular NPJs of bilayer graphene.
We demonstrated that such a system might be used to control
the flow of electrons, similarly to previously realized and
proposed electron optics devices. We have pointed out simi-
larities and differences between electron dynamics in the cir-
cular NPJ of bilayer and monolayer graphenes. In both de-
vices, electron paths form caustics inside the circular p
region and the form of these caustics can be described with a
geometrical optics model based on the concept of negative
refractive index. The major difference is that the strong fo-
cusing of electrons, which is a characteristic of the mono-
layer device, is completely absent in the bilayer. Our findings
are explained in terms of the angular dependence of trans-
mission probability at a planar NPJ.
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FIG. 5. �Color online� Refraction of electron rays at the inter-
face of the n-p junction. The darkness of the refracted rays reflects
the transmission probability: a white ray corresponds to T=0 and a
black ray would correspond to T=1. The dashed curve shows the
shape of the caustic derived from Snell’s law �Ref. 11�. Only the
rays with no internal reflections are displayed. Here the refractive
index is n=−1.
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